Gene set analysis for interpreting genetic studies
نویسندگان
چکیده
منابع مشابه
Gene Set Enrichment Analysis (GSEA) for Interpreting Gene Expression Profiles
Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes. Predefined gene sets may be genes in a known metabolic pathway, located in the same cytogenetic band, sharing the same Gene Ontology category, or any user-defined set. In microarray experiments where no single gene shows statistically signifi...
متن کاملIntegrated gene set analysis for microRNA studies
MOTIVATION Functional interpretation of miRNA expression data is currently done in a three step procedure: select differentially expressed miRNAs, find their target genes, and carry out gene set overrepresentation analysis Nevertheless, major limitations of this approach have already been described at the gene level, while some newer arise in the miRNA scenario.Here, we propose an enhanced meth...
متن کاملGene and Gene-Set Analysis for Genome-Wide Association Studies
Genome-wide association studies (GWAS) have identified hundreds of loci at very stringent levels of statistical significance across many different human traits. However, it is now clear that very large samples (n~104-105) are needed to find the majority of genetic variants underlying risk for most human diseases. Therefore, the field has engaged itself in a race to increase study sample sizes w...
متن کاملGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share comm...
متن کاملPattern-Based Gene-Set Recognition for Interpreting Genome-Wide Gene Expression Profiles
Background: Accurate recognition of important gene sets from genome-wide gene expression profiles provides great insights into the underlying biological mechanisms that govern the gene expression dynamics. However, most gene set recognition algorithms rely solely on supervised sample phenotypic information, overlooking the unsupervised gene-gene expression correlations that are inherently infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Molecular Genetics
سال: 2016
ISSN: 0964-6906,1460-2083
DOI: 10.1093/hmg/ddw249